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Villecun 17.2.75

Dear Larry,

Here is an afterthought to “une lettre-fleuve” on the yoga of homotopy. As
you doubtless know, to a topos X one associates canonically a pro-simplicial set,
and so in a convenient sense a “pro-homotopy type”. When X is “locally homo-
topically trivial”, the associated pro-object is essentially constant as a pro-object
in the homotopy category, and so X defines, in the usual homotopy category, an
object which is the “homotopy type”. Similarly, if X is “locally homotopically
trivial in dim ≤ n", it defines an ordinary homotopy type, but “truncated in dim
≤ n" - this is a familiar construction for n = 0 or 1, even among those like me who
know hardly any homotopy theory!

These constructions are functorial in X . Moreover, if f : X −→ Y is a mor-
phism of topoi, Artin-Mazur have given a cohomological condition which is nec-
essary and sufficient for f to be a “homotopy equivalence in dim ≤ n”: it is that
Hi (Y, F ) ∼−→ Hi (X , f ∗(F )) for i ≤ n, and all locally constant sheaves of groups F
on Y , allowing for i ≤ 1 that F be non-commutative. This criterion, in terms
of “locally constant” n-gerbes F on Y , can be interpreted as the condition that
F (Y ) −→ F (X ) is an n-equivalence for all such F and i ≤ n. It is certainly true
that this is equivalent to the following criterion:

(A) For every “locally constant” n-stack F on Y , the n-functor F (Y ) −→
f ∗(F )(X ) is an n-equivalence;

or again
1This text had been transcribed by Mateo Carmona
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(B) The n-functor F −→ f ∗(F ) which sends the n-category of locally constant
(n − 1)-stacks in Y to that of locally constant (n − 1)-stacks on X , is an n-
equivalence.

In other terms, the construction on a topos X which one can make in terms
of (n− 1)-stacks which are locally constant, depend only on its “n-truncated pro-
homotopy type”, and define it. In the case where X is locally homotopically trivial
in dim ≤ n, and so defines a n-truncated ordinary homotopy type, one can inter-
pret these last as an n-groupoid Cn, (defined up to n-equivalence). In terms of
these

(C) The (n− 1)-stacks on X should be able to be identified with the n-functors
from the category Cn n-category (n− 1)−Cat of all (n− 1)-categories.

In the case n = 1, this is nothing other than the Poincaré theory of the clas-
sification of coverings of X in terms of the “fundamental groupoid” C1 of X . By
extension, Cn merits the name fundamental n-groupoid of X , which I propose to
write Πn(X ). Knowledge of this includes knowledge of the πi (X ) (0≥ i ≥ n) and
the Postnikoff invariants of all orders up to Hn+1(Πn−1(X ),πn).

In the case of an arbitrary topos X , not necessarily locally homotopically triv-
ial in dim ≤ n, one hopes to be able to interpret the (n − 1)-stacks which are
locally constant on X in terms of a Πn(X ) which will be a pro-n-groupoid. This
has been done, more or less, for n = 1 (at least for connected X ); the case where
X is the étale topos of a scheme is treated extensively in SGA 3, in relation to the
classification of tori on an arbitrary base.

In the case n = 1, one knows that one can recover (up to equivalence) the 1-
groupoid C1 from the 1-category Hom(C1, Set) of the functors into Set= 0−Cat
(i.e. the “local systems” on C1 which is a topos, called “multigaloisian”) - like the
category of “fibred functors” on the above topos, i.e. the opposite category to the
category of points of this topos (which is none other than the classifying topos of
C1). To make precise for arbitrary n the way in which the homotopy n-type of a
topos X (supposed for simplicity to be locally homotopically trivial in dim ≤ n)
i.e. its fundamental n-groupoid Cn, can be expressed in terms of the n-category
of “local (n − 1)-systems on X ” i.e. of the locally constant (n − 1)-stacks on X ,
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and to elucidate completely the hypothetical statement (B) above, it is necessary
to make explicit how an n-groupoid Cn can be recovered, up n-equivalence, from
the knowledge of the n-category

C n = n−Hom(Cn, (n− 1)−Cat)

of local (n − 1)-systems on Cn. One would like to say that Cn is the category of
“fibred n-functors” on C n, i.e. of n-functors C n −→ (n− 1)−Cat having certain
exactness properties (for n = 1, this is the condition of being the inverse image
functor for a morphism of topoi, i.e. to commute with arbitrary lim←− and with
finite lim−→...). It is this which makes real the fear, expressed in my preceding letter,
that one ends by falling upon the notion of n-topos and of morphisms of these!
C n will be an n-topos, (called the “classifying n-topos” of the n-groupoid Cn),
(n − 1)−Cat will be the n-topos of points, and Cn will be interpreted modulo
n-equivalence as the n-category of "n-points" of the classifying n-topos C n. Brr !

If one hopes to be able to define a good old classifying 1-topos for an n-
groupoid Cn, as solution of a universal problem, I can see only how to recover the
following universal problem: for every topos T , consider Hom(Πn(T ),Cn). This
is an n-category, but take from it the truncated 1-category τ1Hom(Πn(T ),Cn).
For variable T , one wants to 2-represent the contravariant 2-functor Top◦ −→
1−Cat by a classifying topos B= BCn

, and then to find a 2-universalΠn(B)
ϕ
−−→Cn

in the sense that for all T , the functor

HomTop(T ,B)
u 7→ϕ◦Πn(u)−−−−−→ τ1Hom(Πn(T ),Cn)

is an equivalence. For n = 1 one knows that the usual classifying topos of C1

does the job, but for n = 2 already, I doubt that this universal problem has a
solution. This is perhaps related to the fact that the “Van Kampen Theorem”,
which one can express by saying that the 2-functor T −→ Π1(T ) of locally 1-
connected topoi to groupoids transforms (up to 1-equivalence) amalgamated sums
to amalgamated sums (and more generally commutes with inductive 2-limits), is
doubtless no longer true for Π2(T ). Thus, if T is a topological space which is the
union of two closed sets, T1 and T2, it is doubtless not true that giving a locally
constant 1-stack on T “ is equivalent to” giving a locally constant 1-stack Fi on
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Ti (i = 1,2) and an equivalence between the restrictions of F1 and F2 to T1 ∪ T2

(while the analogous statement in terms of 0-stacks, i.e. for coverings, is evidently
correct).

The statement (B) above makes it clear how to give explicitly the cohomology
of an n-groupoid Cn. If Cn =Πn(X ), and if F is a locally constant (n−1)-stack on
X , and eX

n−1 is the “final” (n− 1)-stack, one has an (n− 1)-equivalence of (n− 1)-
categories

ΓX (F ) = F (X )'Hom(eX
n−1, F )

which shows that the functor ΓX “integration on X ” for locally constant (n− 1)-
stacks, which includes the (non-commutative) locally constant cohomology of X
in dim ≤ n − 1, can be interpreted in terms of “local (n − 1)-systems” on the
fundamental groupoid as an Hom(eCn

n−1, F ) where now F is interpreted as an n-
functor

Cn
F−−→ (n− 1)−Cat

and eCn
n−1 is the constant n-functor on Cn, with value the final (n− 1)-category.

To interpret this in cohomology notation, it is necessary for me to add,
as “apology” to the preceding letter, the explicit interpretation of the non-
commutative cohomology on a topos X , in terms of integration of n-stacks on
X . If F is a strict Picard n-stack on X , then it is defined by a complex L◦ on X

0−→ L0 −→ L1 −→ L2 −→ ...−→ Ln −→ 0

concentrated in degrees 0 ≤ i ≤ n (defined uniquely up to isomorphism in the
derived category of Ab(X )). That said, the Hi (X , L′) (hypercohomology) for 0≤
i ≤ n can be interpreted as Hi (X , L′) =πn−iΓX (F ). If one is interested in all the Hi

(not just for i ≤ n) one must, for all N ≥ n, regard L◦ as a complex concentrated
in degrees 0≤ i ≤N by prolongation of L◦ by 0 to the right). The corresponding
strict Picard n-stack is no longer F but C N−nF , where C is the “classfying space”
functor, interpreted on strict Picard n-categories as the operation consisting of
“translating” the i -objects to (i + 1)-objects, and adjoining a unique 0-object; this
extends one hopes, in “an obvious way”, to n-stacks, so as to commute with the
operation of taking the inverse image of an n-stack. One has then for i ≤N

Hi (X , L′) =πN−iΓX (C
N−nF ) i ≤N .
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Given this, it is necessary to put, for all strict Picard n-stacks F on X ,

Hi (X , F ) =πN−iΓX (C
N−nF ) if N ≥ i , n

which does nor depend on the choice of integer N ≥ S u p(i , n) [N.B. One has a
canonical morphism of (n− 1)-groupoids,

C (ΓX F )−→ ΓX (C F ),

as the obvious constructions in terms of cochains show, and one sees in the same
way that this induces isomorphisms on πi for 1≤ i ≤ n+ 1.]

N.B. One sees by the way that for F and n-stack of groupoids on X , if one re-
stricts to defining the Hi (X , F ) for 0≤ i ≤ n, one has no need of a Picard structure
on F , as it is sufficient to put

Hi (X , F ) =πn−i (ΓX (F )) 0≤ i ≤ n.

If on the other hand F is an n-Gr-stack (i.e. F has the structure of a composition
law F × F −→ F with the usual formal properties of a group) the “classifying
(n+ 1)-stack” is defined, and one can define Hi (X , F ) for i ≤ n+ 1 by

Hi (X , F ) =πn+1−i (ΓX (C F ))

in particular

Hn+1(X , F ) =π0(ΓX (C F )) = equivalence classes of sections C F .

But one can form C C F =C 2F and define Hn+2(X , F ), it seems only if C F is itself
a Gr-(n + 1)-stack, which is without doubt the case only if F is a strict Picard
n-stack...

Let us now come to the case where F is a locally constant n-stack on X , and so
is defined by an (n+ 1)-functor

Cn+1
F−−→ strict Picard n−Cat .

Then, putting for 0≤ i ≤ n

Hi (Cn+1, F ) =πn−1(Hom(eCn+1
n , F )),
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“one knows it fails”, as one has a canonical isomorphism

Hi (Cn+1, F )'Hi (X , F ),

valid in effect without Picard structure on F ... It is thus necessary for all i and for
every∞-groupoid C and every (n+ 1)-functor

C
F−−→ strict Picard n−Cat,

to define

Hi (C , F ) =πN−i Hom(eC
N ,C N−nF )

where one chooses N ≥ S u p(i , n). If F has only a Gr-structure (not necessarily
Picard) one can define the Hi (C , F ) for i ≤ n+ 1 by

Hi (C , F ) =πn+1−i Hom(eC
n+1,C F ).

In the case C = Cn+1 = Πn+1(X ), it must still be true (by virtue of (A) above),
that this set is canonically isomorphic to Hn+1(X , F ) =π0ΓX (C F ) (this is true and
very easy for n = 0). Can one describe the arrow between the two sides of

Hn+1(X , F )'Hn+1(Πn+1X , F ) ?

If one wishes to make (A) and (B) explicit again, in terms of the yoga (C), one
comes to the following situation:

One has an (n+ 1)-functor between (n+ 1)-groupoids

fn+1 : Cn+1 −→Dn+1

which induces by truncation an n-functor

fn : Cn −→Dn

One must than have:

(A’) fn is an n-equivalence if and only if the n-functor

f ∗n : Hom(Dn, (n− 1)−Cat)−→Hom(Cn, (n− 1)−Cat)
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which sends the local (n − 1)-systems on Dn (or, equally, on Dn+1) to the local
(n− 1)-systems on Cn, is an n-equivalence.

(B’) fn is an n-equivalence if and only if for every local n-system F on Dn+1,

F : Dn+1 −→ n−Cat,

the n-functor induced by fn+1

Hom(eDn+1
n , F )
︸ ︷︷ ︸

ΓDn+1(F )

−→Hom(eDn+1
n , f ∗n+1F )
︸ ︷︷ ︸

ΓCn+1(F )

is an n-equivalence.

The construction of the cohomology of a topos in terms of integration of
stacks makes no appeal at all to complexes of abelian sheaves and still less to the
technique of injective resolutions. One has the impression that in this spirit, via
the definition (which remains to be made explicit!) of n-stacks, it is all related
above all to the “Cechist” calculations in terms of hypercoverings. Now these last
are written with the help of a small dose of semi-simplicial algebra. I do not know
if a theory of stacks and of operations on them can be written without ever using
semi-simplicial algebra. If yes, there would be essentially three distinct approaches
for constructing the cohomology of a topos:

a) viewpoint of complexes of sheaves, injective resolutions, derived categories
(commutative homological algebra)

b) viewpoint Cechist or semi-simplicial (homotopical algebra)

c) viewpoint of n-stacks (categorical algebra, or non-commutative homological
algebra).

In (a) one “resolves” the coefficients, in (b) one resolves the base space (or topos),
and in (c) it appears one resolves neither the one nor the other.

Very cordially,

Alexandre
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