The purpose of these notes is to study the Gr-categories and give some applications of them. Below is a brief description of the organisation of the work.

Chapter I gives some definitions and results, which are used continually in the sequel, on \otimes-categories one can find in [2], [6], [11], [14], [15], the terminology employed in this chapter being of Neantro Saavedra Rivano [14]. A \otimes-category is a category \mathcal{C} together with a law \otimes, i.e. a covariant bifunctor

$$\otimes : \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$$

$$(X, Y) \mapsto X \otimes Y$$

An associativity constraint for a \otimes-category \mathcal{C} is an isomorphism of bifunctors

$$a_{X,Y,Z} : X \otimes (Y \otimes Z) \xrightarrow{\sim} (X \otimes Y) \otimes Z, \quad X, Y, Z \in Ob(\mathcal{C})$$

satisfying the pentagon axiom, i.e. all the pentagonal diagrams

are commutative. A \otimes-category together with an associativity constraint is called a \otimes-associativity category.

A commutativity constraint for a \otimes-category \mathcal{C} is an isomorphism of bifunctors

$$c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X, \quad X, Y \in Ob(\mathcal{C})$$
verifying the relation
\[c_{Y,X} \circ c_{X,Y} = \text{Id}_{X \otimes Y} \]

The commutativity constraint \(c \) is said to be strict if \(c_{X,X} = \text{Id}_{X \otimes} \) for all \(X \in \text{Ob}(\mathcal{C}) \). A \(\otimes \)-category together with a commutativity constraint is a \(\otimes \)-commutative category. A \(\otimes \)-commutative category is strict if its commutativity constraint is strict.

An unity constraint for a \(\otimes \)-category \(\mathcal{C} \) is a triple \((1, g, d)\) where \(1 \) is an object of \(\mathcal{C} \), \(g \) and \(d \) natural isomorphisms
\[g_X : X \cong 1 \otimes X, \quad d_X : X \cong X \otimes 1, \quad X \in \text{Ob}(\mathcal{C}) \]
such that \(g_1 = d_1 \). A \(\otimes \)-category together with an unity constraint is a \(\otimes \)-unifer category.

A \(\otimes \)-category \(\mathcal{C} \) together with an associativity constraint \(a \) and a commutativity constraint \(c \) is a \(\otimes \)-AC category if the hexagonal axiom is fulfilled, i.e. all the hexagonal diagram commutes
\[
\[
\]
A \(\otimes \)-category \(\mathcal{C} \) together with an associativity constraint \(a \) and an unity constraint \((1, g, d)\) is a \(\otimes \)-AU category if all the following triangles commute
\[
\[
\]
A \(\otimes \)-ACU category is a \(\otimes \)-AC and AU category. An object \(X \) of a \(\otimes \)-ACU category \(\mathcal{C} \) is invertible if there are two objects \(X', X'' \in \text{Ob}(\mathcal{C}) \) such that \(X' \otimes X \cong 1 \).

A \(\otimes \)-functor from a \(\otimes \)-category \(\mathcal{C} \) to a \(\otimes \)-category \(\mathcal{C}' \) is a pair \((F, \tilde{F})\) where \(F \) is a functor \(\mathcal{C} \longrightarrow c\mathcal{C}' \) and \(\tilde{F} \) an isomorphism of bifunctors
\[\tilde{F}_{X,Y} : FX \otimes FY \longrightarrow F(X \otimes Y) \quad X, Y \in \text{Ob}(\mathcal{C}) \]
A \(\otimes \)-functor \((F, \tilde{F})\) from a \(\otimes \)-associative category \(\mathcal{C} \) to a \(\otimes \)-associative category \(\mathcal{C}' \) is associative if the following diagram commutes:
\[
\[
\]
where \(a \) is the associativity constraint of \(\mathcal{C} \) and \(a' \) of \(\mathcal{C}' \).

A \(\otimes \)-functor \((F, \tilde{F})\) from a \(\otimes \)-commutative category \(\mathcal{C} \) to a \(\otimes \)-commutative category \(\mathcal{C}' \) is commutative if the following diagram commutes:
\[c\] and \(c'\) being the commutativity constraints of \(\mathcal{C}\) and \(\mathcal{C}'\) respectively.

A \(\otimes\)-functor \((F, \tilde{F})\) from a \(\otimes\)-category \(\mathcal{C}\) with an unity constraint \((1, g, d)\) to a \(\otimes\)-category \(\mathcal{C}'\) with an unity constraint \((1', g', d')\) is a \(\otimes\)-unifer functor if there exists an isomorphism \(\hat{F} : 1' \sim \rightarrow F_1\) such that the following diagrams commute:

\[
\begin{array}{c}
\end{array}
\]

It follows from the definition that the isomorphism \(\hat{F} : 1' \sim \rightarrow F_1\), if it exists, is unique.

A \(\otimes\)-AC functor is an \(\otimes\)-associative and commutative functor.

A \(\otimes\)-ACU functor is a \(\otimes\)-associative, commutative and unifer functor.

Let \((F, \tilde{F})\) and \((G, \tilde{G})\) be \(\otimes\)-functors from a \(\otimes\)-category \(\mathcal{C}\) to a \(\otimes\)-category \(\mathcal{C}'\). A \(\otimes\)-morphism from the \(\otimes\)-functor \((F, \tilde{F})\) to the \(\otimes\)-functor \((G, \tilde{G})\) is a morphism of functors \(\lambda : F \rightarrow G\) such that the following diagram commutes:

\[
\begin{array}{c}
\end{array}
\]

Chapter II is a study of Gr-categories and Pic-categories. A Gr-category is a \(\otimes\)-AU category, the objects of which are all invertible, and the base category a groupoid (i.e. all arrows are isomorphisms). Thus a Gr-category is like a group. We obtain from this definition that if \(\mathcal{P}\) is a Gr-category, the set \(\pi_0(\mathcal{P})\) of the classes up to isomorphism of objects of \(\mathcal{P}\), together with the operation induced by the law \(\otimes\) of \(\mathcal{P}\), is a group; the group \(\text{Aut}(1) = \pi_1(\mathcal{P})\) is a commutative group; and for all \(X \in \text{Ob}(\mathcal{P})\)

\[
\gamma_X : u \mapsto u \otimes \text{Id}_X = \text{Aut}(1) \sim \rightarrow \text{Aut}(X)
\]

\[
\delta_X : u \mapsto \text{Id}_X \otimes u = \text{Aut}(1) \sim \rightarrow \text{Aut}(X)
\]

We attribute thus to a Gr-category \(\mathcal{P}\) two groups \(\pi_0(\mathcal{P})\) and \(\pi_1(\mathcal{P})\) where \(\pi_1(\mathcal{P})\) is commutative. Furthermore we can define an action of \(\pi_0(\mathcal{P})\) on \(\pi_1(\mathcal{P})\) by the formula

\[
su = \delta_X^{-1} \gamma_X(u)
\]

for \(s \in \pi_0(\mathcal{P})\) represents \(d\) by \(X\) and \(u \in \pi_1(\mathcal{P})\). The commutative group \(\pi_1(\mathcal{P})\) together with this action is a left \(\pi_0(\mathcal{P})\)-module.
Let M be a group, N a left M-module. A preplinage of type (M, N) for a Gr-category \mathcal{P} is a pair $\varepsilon = (\varepsilon_0, \varepsilon_1)$ of isomorphisms

$$\varepsilon_0 : M \to \pi_0(\mathcal{P}), \quad \varepsilon_1 : N \to \pi_1(\mathcal{P})$$

compatible with the action of M on N, $\pi_0(\mathcal{P})$ on $\pi_1(\mathcal{P})$. A Gr-category preepli-ngled of type (M, N) is a Gr-category \mathcal{P} together with preplinage. Finally, an arrow of Gr-categories preeplngled of type (M, N) $(\mathcal{P}, \varepsilon) \to (\mathcal{P}', \varepsilon')$ is a \otimes-associative functor such that the following triangles commute:

It follows from this definition that such an arrow is a \otimes-equivalence. Thus the set of the equivalence classes of Gr-categories preeplngled of type (M, N) is equal to the set of connected components of the category of Gr-categories preeplngled of type (M, N).

If we consider the cohomology group $H^3(M, N)$ of the group M with coefficients N (in the sense of the group cohomology [12]) we obtain a canonical bijection between the set $H^3(M, N)$ and the set of the equivalence classes of Gr-categories preeplngled of type (M, N).

A Pic-category is a Gr-category together with a commutativity constraint which is compatible with its associativity constraint, i.e. the hexagon axiom is satisfied. Thus a Pic-category is like a commutative group. We verify immediately that a necessary condition for the existence of a Pic-category structure on a Gr-category is that $\pi_0(\mathcal{P})$ must be commutative and act trivially on $\pi_1(\mathcal{P})$. A Pic-category is strict if its commutativity constraint is strict.

Let M, N be abelian groups. A preplinage of type (M, N) for a Pic-category \mathcal{P} is a pair $\varepsilon = (\varepsilon_0, \varepsilon_1)$ of isomorphisms

$$\varepsilon_0 : M \to \pi_0(\mathcal{P}), \quad \varepsilon_1 : N \to \pi_1(\mathcal{P})$$

A Pic-category preeplngled of type (M, N) is a Pic-category together with a preplinage. We define the arrow of such objects in the same way as for Gr-categories.

For next propositions, let us consider two complexes of free abelian groups

$$L_4(M) : L_3(M) \to L_2(M) \to L_1(M) \to L_0(M) \to M$$
\[
\begin{array}{ccc}
\prime L_3(M) & \xrightarrow{d_3} & \prime L_2(M) \\
\xrightarrow{d_2} & & \xrightarrow{d_1} \\
\prime L_1(M) & \xrightarrow{d_1} & \prime L_0(M) \\
\xrightarrow{\delta} & & M
\end{array}
\]

where

\[
\begin{array}{l}
\exists \\
\end{array}
\]

so that \(\prime L_\bullet(M) \) is a truncated resolution of \(M \). One obtains a canonical bijection between the set of the equivalence classes of Pic-categories preepingled of type \((M, N)\) and the set \(\text{H}^2(\text{Hom}(\prime L_\bullet(M), N)) \). The exactitude of the complex \(L(M) \) gives us the triviality of the classification of Pic-categories preepingled of type \((M, N)\) which are strict, i.e. all Pic-categories preepingled of type \((M, N)\) which are strict, are equivalent.

Finally chapter III gives us the construction of the solution of two universal problems: \textit{problem of making objects “unity objects”} and \textit{problem of reversing objects}.

Let be a \(\otimes\text{-AC category} \), \(\prime \) another \(\otimes\text{-AC category} \) whose base category is a groupoid, and \((T, \tilde{T}) : \xrightarrow{\prime} \text{a } \otimes\text{-AC functors} \). We try to make the objects \(T\prime A \) of \(A' \in \text{Ob}(\prime) \), “unity object”, i.e. we try to get:

1°) A \(\otimes\text{-ACU category } \mathcal{P} \)

2°) A \(\otimes\text{-AC functor } (\text{\(D, \tilde{D} \)) : \xrightarrow{\prime} \mathcal{P}} \)

3°) A \(\otimes\text{-isomorphism } \lambda : (\text{\(D, \tilde{D} \))} \circ \text{\(T, \tilde{T} \)) \xrightarrow{\sim} (\text{\(I_{\mathcal{P}}, \tilde{I}_{\mathcal{P}} \))} \)

where \((I_{\mathcal{P}}, \tilde{I}_{\mathcal{P}})\) is the \(\otimes\text{-constant functors } 1_{\mathcal{P}} \) from \(\prime \) to \(\mathcal{P} \). The triple \((\mathcal{P}, (D, \tilde{D}), \lambda)\) must be universal for triples \((E, \tilde{E}, \mu)\) satisfying 1°, 2°, 3°.

For the description of the triple \((\mathcal{P}, (D, \tilde{D}), \lambda)\), we introduce a quotient category of a \(\otimes\text{-AC category} \) as follows:

Let be a \(\otimes\text{-AC category} \), \(Y \) a \textit{multiplicative subset} of (that means a subset of the set of all endomorphisms of such that \(\text{Id}_X \in Y \) for all \(X \in \text{Ob}(\prime) \) and the tensor product of two arrows of \(Y \) belongs to \(Y \)). The \(\otimes\text{-AC category quotient } A^Y \) with respect to \(Y \) is the solution of the universal problem

\[
(K, \tilde{K}) : \xrightarrow{\prime}, \quad K(u) = \text{Id} \text{ for all } u \in Y
\]

where \(B \) is a \(\otimes\text{-AC category} \) and \((K, \tilde{K})\) a \(\otimes\text{-AC functor} \).

Now let us give an idea of the construction of the triple \((\mathcal{P}, (D, \tilde{D}, \lambda))\) for \(\prime \neq \emptyset \):
$1° \ \text{Ob}(\mathcal{P}) = \text{Ob}(\mathcal{I})$

$2° \ \text{Hom}_{\mathcal{P}}(A, B) = \varphi(A, B)_{R_{A,B}}, A, B \in \text{Ob}(\mathcal{P})$

$\varphi(A, B)$ being the set of all triples (A', B', u) where $A', B' \in \text{Ob}(\mathcal{I})$, $u \in F(I)$, $u : A \otimes T A' \longrightarrow B \otimes T B'$; $R_{A,B}$ the equivalence relation defined in $\varphi(A, B)$ as follows

$$(A'_1, B'_1, u) R_{A,B} (A'_2, B'_2, u)$$

if and only if there are objects C'_1, C'_2 and isomorphisms

$$u' : A'_1 \otimes C'_1 \sim A'_2 \otimes C'_2, \quad v' : B'_1 \otimes C'_1 \sim B'_2 \otimes C'_2$$

of \mathcal{I} such that the following diagram commutes in \mathcal{I}-AC quotient category of \mathcal{I} with respect to the multiplicative subset of generated by the endomorphisms of the form $T(c_{A', A})$;

\square

We denote by $[A', B', u]$ the class which has (A', B', u) as representative

$3° \ \text{Composition of arrows in } \mathcal{P}$. Let $[A', B, u] : A \longrightarrow B, [B'', C'', v] : B \longrightarrow C$ be arrows in \mathcal{P}. We define

$$[B'', C'', v] \circ [A', B', u] = [A' \otimes B'', B' \otimes C', w] : A \longrightarrow C$$

where w is such that the following diagram commutes:

\square

$4° \ \otimes$-structure on \mathcal{P}

$$A \otimes E \ (\text{in } \mathcal{P}) = A \otimes E \ (\text{in } \mathcal{I})$$

$$[A', B', u] \otimes [E', F', v] = [A' \otimes E', B' \otimes F', w]$$

where w is defined by the commutative diagram (1)

$5° \ \text{ACU constraint in } \mathcal{P}$.

$$([A', A', a \otimes \text{Id}], [A', A', c \otimes \text{Id}], (1_{\mathcal{P}} = TA_0, g_A = [A'_0 \otimes A', A', t_A], d_A = [A'_0 \otimes A', A', p_A]))$$

where A'_0 is a fixed object of \mathcal{I}, A' an arbitrary object of \mathcal{I}, g_A and d_A natural isomorphisms

$$g_A : A \longrightarrow 1_{\mathcal{P}} \otimes A, \quad d_A : A \longrightarrow A \otimes 1_{\mathcal{P}}$$

with t_A and p_A defined by the commutativity diagrams (2)
\((D, \tilde{D}) \) is defined by

\[
DA = A, \quad D_u = [A', A', \mu \otimes \text{Id}_{T'A'}], \quad \tilde{D}_{A,B} = \text{Id}_{A\otimes B}
\]

For the problem of reversing objects, let us consider a \(\otimes \)-category \(\mathcal{C} \) with a ACU constraint \((a, c, (1, g, d))\) a \(\otimes \)-category \(\mathcal{C}' \) with a ACU constraint \((a', c', (1', g', d'))\), the base category of which is a groupoid, and a \(\otimes \)-ACU functor \((F, \tilde{F}) : \mathcal{C}' \to \mathcal{C} \). We try to find a \(\otimes \)-ACU category \(\mathcal{P} \) and a \(\otimes \)-ACU functor \((D, \tilde{D}) : \mathcal{C} \to \mathcal{P} \) having the following properties

1. \(DFX' \) is invertible in \(\mathcal{P} \) for all \(X' \in \text{Ob}(\mathcal{C}') \)

2. For all \(\otimes \)-ACU functor \((E, \tilde{E})\) from \(\mathcal{C} \) to a \(\otimes \)-ACU category such that \(EFX' \) is invertible in \(\mathcal{P} \) for all \(X' \in \text{Ob}(\mathcal{C}') \), there exists a \(\otimes \)-ACU functor \((E', \tilde{E}')\), unique up to \(\otimes \)-isomorphism, from \(\mathcal{P} \) to \(\mathcal{P} \) such that \((E, \tilde{E}) \simeq (E', \tilde{E}' \circ (D, \tilde{D})) \).

This problem is reduced by the first by putting \(' = \mathcal{C}' = \mathcal{C} \times \mathcal{C}' \), \(TX' = (FX', X') \) and by remarking that if \(\mathcal{C} \), \(\mathcal{C}' \), are \(\otimes \)-ACU categories, \(\otimes \text{ACU}(\mathcal{C}, \mathcal{C}') \) the category of all \(\otimes \)-ACU functors from \(\mathcal{C} \) to \(\mathcal{C}' \), then there is a canonical equivalence of categories

\[
\text{ACU}(\mathcal{C} \times \mathcal{C}', \mathcal{C}) \to \text{ACU}(\mathcal{C}, \mathcal{C}') \times \text{ACU}(\mathcal{C}', \mathcal{C})
\]

The \(\otimes \)-ACU category \(\mathcal{P} \) thus defined is called the \(\otimes \)-category of fractions of the category \(\mathcal{C} \) with respect to \((\mathcal{C}', (F, \tilde{F}))\). The \(\otimes \)-category of fractions of \(\mathcal{C}^{\text{is}} \) with respect to \((\mathcal{C}^{\text{is}}, (\text{Id}_{\mathcal{C}^{\text{is}}}, \text{Id}))\) is a Pic-category which is called the Pic-envelope of the category \(\mathcal{C} \), and denoted by Pic(\(\mathcal{C} \)).

For an application of the Pic-envelope, we take \(\mathcal{C} = P(R) \), category of all finitely generated \(R \)-modules (\(R \) a ring) and \(\mathcal{P} = \text{Pic}(P(R)) \), then one obtain

\[
\pi_0(\mathcal{P}) \simeq K^0(R)
\]

\[
\pi_1(\mathcal{P}) \simeq K^1(R)
\]

where \(K^0(R) \) is the Grothendieck group and \(K^1(R) \) the whitehead group [1].
The use of the \otimes-category of fractions of a \otimes-ACU category gives us the following result:

Let \mathcal{C} be a \otimes-ACU category, Z an arbitrary object of \mathcal{C} different from the unity object 1, S the functor from \mathcal{C} to \mathcal{C} defined by

$$X \mapsto X \otimes Z.$$

The suspension category of the \otimes-ACU category \mathcal{C} defined by the object Z is the triple (\mathcal{P}, i, p) which solves the universal problem for triples (j, q) where \mathcal{I} is a category, j a functor from \mathcal{C} to, and q an equivalence of categories from to, so that the following diagram commutes

$$[]$$

up to natural isomorphism. In the case where \mathcal{C} is the homotopy category of pointed topological spaces, together with the smash \Wedge (the smash \Wedge of two spaces X and Y, with the base points x_0 and y_0, is obtained from the product $X \times Y$ by \Wedge the subset $\{x_0, y_0\}$ to a single point which is taken as the base point of \mathcal{C}, and the usual ACU constraint; and Z is the 1-sphere S^1 hence S^1 is the suspension functor, we get the well-known definition of the suspension category.

Let \mathcal{C}' be the \otimes-stable subcategory of \mathcal{C} generated by Z and \mathcal{P} the \otimes-category of fractions of \mathcal{C}' with respect to $(\mathcal{C}', (F, \text{Id}))$ where $F : \mathcal{C}' \longrightarrow \mathcal{C}$ is the inclusion functor. One obtains a functor $G : \mathcal{P} \longrightarrow \mathcal{P}$ from the suspension category to the \otimes-category of fractions of \mathcal{P}. If G is not faithful, that is the case of the homotopy category of pointed topological spaces, together with the smash \Wedge and the 1-sphere S^1; then it is impossible to construct in \mathcal{P} a law \otimes such that \mathcal{P} together with this law is a \otimes-ACU category, iZ invertible in \mathcal{P}, and i embedded in a pair (i, \tilde{i}) which is a \otimes-ACU functor from \mathcal{C} to \mathcal{P}.

8
REFERENCES

[3] BOURBAKI, N — *Théorie des ensembles*

[4] — *Algèbre commutative*

[5] — *Algèbre multilinéaire*

[6] DELIGNE, P — *Champs de Picard strictement commutatifs*, SGA 4 XVIII

[9] GROTHENDIECK, A — *Biextensions de faisceaux de groupes*, SGA 7, VII

